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£a Abstract
'If the interarrival times of a renewal process { si' i=0,;1,2... } have !
a failure rate function which is bounded away from 0 and <, then it is'
possible to construct jnonhomogeneous) Poisson processes { Tg, P=0,% . s F
1 5
and { Ty 1=0,1,2,... } on the same probability space with { s;» i=0,1,2,... }
4 ] p
4 0 0 0 i i1 i
such that { Tor Tyr Toree | - Sgr Syr Syree- Yefd Tor Tyr Tpyree }  almost
surely. This has applications to the reliability theory of maintained systems. @
|
An almost sure comparison is also demonstrated for certain alternating renewal '
i r {
A processes which arose in Barlow and Proschan's (1976) investigation of main- .
|
; tained systems in which repairs are not instantaneous. |
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1. Introduction and Summary

Inequalities play an important role in reliability theory. One example
is the following: Let F be the lifetime distribution of a component or

system with failure rate function r(*) . Suppose inf r(t) = r, > 0 and
Tt

sup r(t) = rl <@ . If FO and Fl are cdf's of exponential random vari-
t

ables with means ral and rIl respectively, then Fo(x) < F(x) < Fl(x)

for x < 0 . Such inequalities are valuable in situations where the lifetime
cdf F is unknown but it is possible to know or establish bounds on the
failure rate function.

If a component is instantaneously replaced or repaired when it fails,
the sequence of failure times forms a renewal process: Let Xi' 321 ,2 yuiee
be a sequence of i.i.d. lifetime random variables. Let S_ =0, S, =X ,

0 1 x

= ¢ = e = A i= " e i
Sy =% + X, 4By % AH AX, . , then { s, i=0,1,2, } is a

renewal process. The purpose of this note is to present bounds for the
renewal process S similar to the example of the preceding paragraph,
namely: Suppose that the distribution of X has failure rate function xr(*)

such that inf r(t) = ro >0 and sup x(t) = r1 < o ., We show (Corollaries
t t

1 and 2) that it is possible to construct Poisson processes { Tg, i=0,1,2,

1 "
wew o 004 Ti' i=0,1,2,... } with rates r, and r1 respectively, such

that

0
1’

0 3 R (R
T 1’ Syr eee 1 Toyr Tyr Tyr - 1

0
{'ro,'r gt e }:{so,s 1.1)

with probability 1 , i.e., the failure times of the respective processes

are subsets of one another. (We shall actually construct nonhomogeneous

Poisson processes which satisfy (1.1)).

——ree
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It is possible to use this to compute bounds on expected maintenance
costs, for example. This result is probably also of general interest as a
contribution to the theory of Poisson processes and renewal theory and thus
may be useful for establishing bounds in queueing theory or inventory theory.

It is also possible to obtain a comparison result (Theorem 3) for
certain alternating renewal processes which arise when repairs or replace-
ment are not instantaneous. Barlow and Proschan (1976) consider such
processes. Theorem 3 and its proof give a slightly different and more
general approach to their problem. (We assume NWU repair times; they assume
DFR.)

There is a growing literature on comparison results for stochastic
processes. There are two general approaches: stochastic inequalities
(4,8,11,15,24] and almost sure inequalities [13,14,22]. (The list of
references is by no means exhaustive.) Pledger and Proschan (1973), Ross
(1974) , Keilson (1974), and Barlow and Proschan (1976) have applied
stochastic comparison techniques to reliability of maintained systems.

The comparisons derived in this paper will be of the "almost sure" variety.
These results are special for renewal and Poisson processes and are derivecd
from first principles, not from any theories developed in the above-cited
literature, for example [13,22] do not apply. The above theories tend %o
concentrate on stochastically monotone Markov processes [4]. We take more
of a point-process point of view in this paper, focusing on sample paths
and intensities rather than transition probabilities. Our approach is
constructive and indicates some interesting relationships involving the
failure rate functions; it may have pedagogical value.

We shall use the following relationship between stochastic and almost




N sure inequalities for the univariate case: Let X and Y be real-valued

random variables with cdf's F and G, then X 1is stochastically less

than Y (denoted X s Y} 1f P(z) 2 G(z) for all =z. LTet U and WV
be real-valued random variables defined on the same probability space 1
(.F,p), then U 1is almost surely less than V (denoted (Jéf Mo HiE

P(we R : U(w <V(w )=1. Let X 2 U mean that the random variables

X and U have the same distribution.

st
Lemma 1. Let X and Y be real-valued random variables. If X <Y,
then there exist a probability space (Q,F,P) and random variables U

N ] D D as
and V defined on it such that U =% X, vVv=Y, and U < V.

3 Proof: Let  be LC,1], f  be the Borel sets and P be Lebesque

/ LAl

I
measure. If X and Y have cdf's F and G, let U=F * and
veg
(This result can be extended to random vectors and random functions [12].)

2. Poisson Bounds on Renewal Processes

In this section the existence of (dependent) nonhomogeneous Poisson

and renewal vrocesses satisfying (l1.1) on a common probability space is

» le‘"’ -

verified. We will use two representations of point processes on [0,®)

é the counting process N and the partial sum process S . N(t) = # points
é in (0,t]. s =inf {t:N(t) <nl}, n=1,2,... . There will be a
® point at 0 : SO = 0 ; this is the zeroth point and is not counted by N

The necessary background facts about homogeneous Poisson processes, renewal

.?T’

processes, failure rates and other topics which will be used without
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reference can be found in most introductory stochastic process texts
[1,6,9,19,22]. The necessary facts about nonhomogeneous Poisson processes

on [O,W) are presented below.

Definition 1 Let r(*) be a real-valued function on [O,w) which is

integrable over bounded intervals, then { N(t),t 2 0} is the counting

process representation of a nonhomogeneous Poisson process with intensity

function r if
i) N(0) =0
ii) N has independent increments

iii) for 0 < s <t , N(t) - N(s) 1is a Poisson random variable with

t
E( N(t) - N(s) ) = [ r(uwadu .
S

g -
We define A(t) = £ r(u)du as the cumulative mean function of the

Poisson process with intensity r(°) .

Lemma 2. Let { N(t), t 2 0 } be a nonhomogeneous Poisson process with
intensity function r(+) . Let T = inf {2 Nie) =0k . ne=0,1,
2,... . Given that N(t) = k , then Tl' T2, Sear Tk are jointly dis-

tributed as the order statistics of a sample of size k from the cdf

A(s)/A(t) , O<s<t . The density of this conditional joint distributicn is

k r(ti)
- k! 1 <
B0ty tyr von oty L) k'i;l—KTET r 0S8 St S ...5¢ St

Proof: Note that the conditional distribution of the interarrival time

T - T, given T, = t, is
i i

i+l b




-7, > T =¢,}
RN R

P{ N(t,+x) - N(t,) =0 | N(t,) =1}
ks A =

t.+x

exp( - f * r(s)ds )

on
%

Thus a version of the density is

t.+x

i
fr, -T.IT,(Xlti) = r(ti+x) exp( - [ r(s)ds )
i+l i’ i ti

The conditional density ft( tl' t O 42 l k ) can be computed now

2’ k
exactly as is done in the proof of the analogous result for homogeneous

Poisson processes, see [19] |l ST [1] p.67, or [9] p.126.

Lemma 3. Let r(*) be right continuous, then {N(t),t>0} is a nonhomo-
geneous Poisson process with intensity function r(¢) , if and only if,

for € =2 0 ,

iig h™h B N(t+h) - N(&) =1 | N(s), s € t } = r(t) (2.1)
lim -1 e
h™ " P{ N(t+h) - N(t) 2 2 | N(s), s <t} =0 (2.2)

h>0
almost surely, and N(0) = O .

Proof: If N 1is a nonhomogeneous Poisson process N(t+h) - N(t) is
t+h
independent of { N(s), s < t } and is Poisson with mean ft r(u)du .
t+h t+h

P{ N(t+h) ~ N(t) = 1 }=exp( - [, r(udu) ft r(u)du = hr(t) + »(h) .

t

This verifies (2.1) ; (2.2) is verified similarly.
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Conversely, (2.1) and (2.2) imply N is nonhomogeneous Poisson. Part
(ii1) of Definition 1 can be verified by solving the Kolmogorov forward
differential equations as in the homogeneous case, [9] p.24, [20] p: 118,

Part (ii) of Definition 1 follows because the limits are independent of

the entire past history, { N(s), s € t } : this implies the Markov

property which in turn implies independent increments in this case.

Note that if (2.1) and (2.2) were weakened by conditioning over
{ N(t) } 1instead of { N(s), s < t } then (unless the Markov property is
assumed) N 1is not necessarily a Poisson process. Similarly part (ii) of
Definition 1 cannot be weakened (to pair-wide independence, for example).
Shepp (see [5])and Szasz (1970) present counterexamples for the homogeneous
case; see Renyi (1967) also.

We can now present the first comparison theorem. ]

Theorem 1. Let { Si’ i=0,1,2,... } be a renewal process with inter-

ot

arrival cédf F which has failure rate function r(*) , i.e. F(x) =

X

1 - exp( - IO t(s)ds ) , X 2 0 - Let rl be a right-continuous function

such that sup r(s) < rl(t) <o for t 2 0 . Then there exists a nonhomoa-
0<s<t

eneous Poisson process { Ti, i=0,1,2,... } with cumulative mean function
T

Al(t) = IO rl(s)ds defined on the same probability space as {Si,i=0,l,2,...'

L 1 1

such that { T, Ty r Ty +S,, ... } almost surely.

...}v{so,sl 3

Proof: As is frequently done, we shall not explicitly define the common
probability space on which S and T1 are defined; from the constructive

g " Loy :
definition of S from T it will be clear how an appropriate probability
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could be defined.
; 1 e - .
Consider { Ti' i=0,1,2,... }, a homogeneous Poisson process with
cumulative mean function Al . We shall construct a dependent version
1

of { Si, i=0,1,2,... }, the desired renewal process, by "thinning" T ,

i.e. certain points Ti will be removed and the remaining points will

constitute { 8,, 1%0,1,2,... ). Define 8 =T =0. If T =t ,

3 3 0 0 1 il
remove ("thin") the point Ti with probability l—r(tl)/rl(tl) , thus

PR ) ol g
Sl = Tl with probability r(tl)/rl(tl) conditional on Tl = tl i
2 St ; X . i . e
Tl is thinned and T2 = t2 , remove the point T2 with probability
5 A 310 ” g s

E r(tz)/rl(tz) - Thts, 1€ Tl = t1 - T2 = t2 ; S1 = t2 with probability

(l—r(tl)/rl(tl))(r(tz)/rl(tz)). Continue inductively until the first

"unthinned" point of Tl is reached and define this point to be Sl ST

other words, given that T = ( O, tl' t2, t3, ... ) define an integer-

valued random variable M1

i r(ti)\
1 rl(ti)f (2.3)

/

1 m
P (M >m [ o = (0,8 st re00) ) =ig

e
Then s1 = TMl 2

We now consider the distribution of S, . Let Nl(t) = max{ n: Ti S

1

>t, N(b) =k }

x"
8
(o)

Sy

p{ 5, > ¢ | oty } f(tl,...,tklk) x

S€.S...8C S
0 tl tk t

dt ...dtkP{ Nj(t) =k }

1

o




e,

exp ( Al(t)

exp(-A(t))

-

k / r(t,) \ k r (&)
1 i — el Lt a& ...at x
i=1 z, (k) i=1 A (%) 1 k
< - o \
k
k
exp(-Al(t)) Al(t)
X!
1 (e e el )] At .. a0 T, (D
Pt il 17 e
- st X!

(x, (s)-x(s))ds SXR =l (61

I

exp(-Al(t))
k'

Aen¥

A(t)) exp( -Al(t))

t
exp( - fO r(s)ds .
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The third equality follows from Lemma 2 and (2.3), the fourth by symmetry,
the rest are routine. The above analysis implies that the distribution of

Sl has failure rate function r(¢). Thus Sl has the desired distribution.

Now we must consider the succeeding events in the renewal process S

e e 1 ;
Condition over the partition { S1 = TM = s1 i sl 2 Q- the random incdex
il

M, 1is a stopping time ([3], p.59), therefore the strong Markov property

1
([3], p.131) implies that the distribution of { T; b T; 0D 2, )
1l 1:

is independent of { Ti OIS S< Ml } conditional on {TM = s, }. Given
l 1
4 3l 1 H
that { TMl =g | PR | TM1+i TMl e

is a nonhomogeneous Poisson
sl+t t

t) = f r,(s)ds = / r (sts))ds .

process with cumulative mean function Al
S 0
1

,1(

Note that rl(t+sl) >  sup r(s) 2 sup r(s) for all t, thus conditional
OSsSt+s1 0<s<t

)4
on {P? =s_1}, the process { T, .. - ot , 1=0,1,2, ... } satisfies the
Ml i Ml+l Ml

same hypotheses which enabled us to construct S, =T . Repeating the
1

constructive procedure gives S2 conditional on S1 =5 - Continuing
inductively allows construction of the entire renewal process { Si , i=

0,1,2,... } . This completes the proof of Theorem 1.

At this junction, some remarks are in order concerning "thinning”:
The usual connotation of "thinning" refers to a more random form of deletinc
points, for example, for 0 < p < 1, each point is deleted with probability
p independently of the process and other deletions. It is well known that a
Poisson process which is "thinned" in this sense remains a foisson process,

see Renyi (1970), p.254, P.4.10. Other aspects of thinning are discussed

frerre
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by Rade (1972) and Jagers and Lindvall (1973).

In Theorem 1 if sup r(s) < « then letting r1 = sup r(s) the
Osg<® O<s<x

hypotheses of theorem are satisfied and we have the following corollary.

Corollary 1. Let { Si' I=00 0, oo } be a renewal process with inter-

arrival distribution F which has failure rate function r(®). If
sup r(t) = r, < @ then there exists a (homogeneous) Poisson process
0<t
{ Ti, i=0,1,... } with intensity L defined on the same probability
space as { S.,, i=0,1,... } such that { Tl, Tl, A {5, s

i OF Sl (g Sl
52,... } almost surely.

Theorem 2. Let { si , i=0,1,2,... } be a renewal process with inter-
arrival distribution F which has failure rate function r(*) . Let

r, be a right-continuous function such that inf r(s) 2 ro(t) >0 for
ss<t

t 2 0. Then there exists a nonhomogeneous Poisson process { Tg , i=
o
0,1,2,... } with cumulative mean function Ay(e) = IO r (s)ds defined on

the same probability space as { s;» i=0,1,2,... } such that

0 0 0
{ Tor Tyr Tyree- et Sqr Sqr Syrees } almost surely.
Proof: Consider ({ Si' i=0,1,2,... }, the renewal process with interarrival
cdf F which has failure rate function r . We shall construct a dependent

: Qo , " :
version of { Ti' i=0,1,2,... }, the desired nonhomogeneous Poisson process,

by "thinning" € as follows: if Si = si and S‘,—S_‘_l = xi, delete Si with
o i 0 _ : 0
probability 1 ro(si)/r(xi), 12,20 « Det TO = SO, let 'r1 equal the

smallest undeleted Si' i21l; 1let Tg equal the second smullest, etc. We

Q0 2 -
use Lemma 3 to show that { T, i=0,1,... } is a nonhomogeneous Poisson
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process with intensity r _(*) : Let N(t) = sup{ n : s, <t }, and
n

0
N (t) =supl n: T <t}
0 n n

Because TO is a thinning of S, the O-fields they generate are
comparable: 0 ({ No(s), s<t}) co({N(si, s<t}) . Therefore, in

order in verify

Iim -1 - . s

meo B PUNG(E#h) - N(8) =1 I N(s), s <t} =r ()
it suffices to verify

Lim =l g (N (t+h) =N (0) =1 | N(s), s <t} =r (£) .

h*0 =510 2 1 0

By the strong Markov property for renewal processes, { N(s), 0<s <s

is conditionally independent of { N(s), S <s <t} given S

(2.4)

N(t)

’

(2.5)

N(t) N(t)
furthermore since sN(t) is the last renewal at or before t ,
{ < < = .
Ol N(S), Sy, S8 <t h =0 Sy’ N(® }) ; also, for a renewal
process, N(t+h) - N(t) is independent of N(t) given sN(t) . Putting
all of this together gives
P{ Ny(t+h) - N () =1 | N(s), s st}
o o]
= Z - = - =
oLy PUNG(E4) - No(8) = 1| N(t+h) - N(®) =k, Sy, } X
P{ N(t+h) - N(t) =k | s j

N(t)

By renewal theory,

( | } F(t+h-s,)-F(t-s,
- = = <
P{N(e+h) - N(&) =k | S .\ =5, TR

(2.6)

}
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equality holds for k = 1, strictly inequality for k > 2 . Dividing
(2.6) by h and letting h ¥ 0 yields r(t-s,) for k=1 and 0

for k > 1. Thus in order to verify (2.4) using (2.5), it suffices to

show that
lim rO(t)
oo BU Ng(t+h) - No(€) = 1 | N(£) =1, Sp,, =84/ = r(t-s,) (2.7)
But
P{ N (t+h) - N (t) =1 | N(en) - N() = 1, Snig) T S« :
t+h
= ft P{SN(t)+l is unthinned | SN(B)+1 &
sy y4q = 5 | £ 5 Syeyar € ERiSyqey = S
s-s,
t+h ro(s) r(s-s,) exp( - IO r(u)du )
s ds
€ r(s—s') tes, t+h-s
exp(- T ) - exp(- [ Trwau)
s-s,
t+h exp( - It-s r(u)du )
=f r,(s) . o
t t+h-s,
1 - exp(— f r (u) du )
t-s,
s-s,
t+h exp( - &fs r(wau )
*
= f IO(S) ds
t 1 -1+ r(t-s,) +of(h)
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t+h r (s)
1 0
== s h
h J't gl{t=s ) g+ ek
r_ (s)
o .EL_____ + o (h)
r(t-s,)

This verifies (2.7) and consequently (2.1) of Lemma 3. Eg. (2.2) of the
Lemma 3 is verified similarly. Thus To is a nonhomogeneous Poisson

process with intonsity ro( Yoo

Corollary 2. Let { Si' i=0,1,... } be a renewal process with interarrival

cdf F which has failure rate function r( ) . If inf r(t) = ro >0
0<t<®

then there exists a (homogeneous) Poisson process { Tg , i=0,1,... } with
intensity ro defined on the same probability space as { Si s A=0hL,wes
0 0

0
such that { TO' Tl, T2"" } e § SO, Sl' SZ"" } almost surely.

We shall now present an example from reliability theory which indicates
a possible application of the above theorems: bounds on the expected
discounted cost of repair/replacement of a component renewal process. Sup-
pose the life time of a component has distribution F with failure rate
function r(¢) . Let Sl' Sz, ..« be successive failure times. Suppose
if a component failures at time t, it costs c(t) to renew it. No
assumptions (except integrability) are placed on ¢, it can vary daily
or seasonally, etc. Let d be a discount factor. The discounted cost of

maintaining the system is

[+ <]
.§1 exp ( -dsi) c(Si) .
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0 1 ) . : :
& T and T are nonhomogeneous Poisson processes with intensity

”

functions r0(°) and rl(-) respectively, as described in Theorems 1

and 2 then

o

0 0
i exp(-dT)) (1)) ;B exp(-ds)) c(s,) <L exp(-dTi) c(Ti)

8
8

It is often easier to evaluate functionals of Poisson processes than
renewal processes. In the above case it is much easier to compute moments:

oo

-dt e l
fo e ™ c(t)r(t1at < BL exp(-ds,)c(s) < fo o-dt ctyr, (Brat

o

In this example it is plausible that r(e) is unknown but can be
assumed to be bounded by r, and rl thus giving the above bound on

expected renewal cost.

3. Comparisons of some alternating renewal processes

In this section we compare some processes which arise when failed
components are not instantaneously repaired. Consider the special case |

of a repairable component with exponential lifetime distribution F and

e

NWU (new worse than used) repair time distribution G . The component

will alternating spend random times functioning and under repair. Let X

i f“ .,Q ~N‘-

be the performance process [2,21] :

0 , component functioning at t
X(t) =
1l , component under repair at t

K Ry

PUARE and Rl' R
i

g2 ™ ipthy * R B %oy * By

If L.: L

1 are the successive lifetimes and repair

AR

ke o o

times, let T L= 0:1;8ssss #




!
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<
J 0 Ty 5T <Tun

X(t) = \‘
<
12 %o 5T The
i=20,1,2,... . Let the auxiliary performance process [2] :
£ é >
i < <
5 2 * " T
z(t) =9
- < <
S Taten Taaen TR Ty
i=20,1,2,... . This process describes a system which is functioning at time

0. Let Zu describe a system which has been under repair at time O for
a duration equal to u . Barlow and Proschan (1976) establish a stochastic
inequality between Zu and Z under the assumption that repair times are
DFR (decreasing failure ra’e). We shall establish an almost-sure ineguality.

Let R, be the initial repair period of a system under repair at time

0
0. If repair commenced at -u , let Tfl = -u and T; = —u+R0 2RQNT
Define TE = Tg + Ti , as defined above. Then
( u u
o = Al
J v T21 = 2i+1
Zu(t) = 9
¢ - pY u & u

Toier T2i41 ¢ < Toi4n

i=-1,0,1,... . Note that Z and zu are both Markov processes with the

same transition law, only their initial state differs.

Theorem 3 The processes 2Z and Zu can be defined on a common prob-

ability space such that 2Z(t) < Zu(t) + t 20, almost surely.

Proof: Let Rg be the remaining repair time in a repair period which

has been in proaress u units of time. Let Li be lifetime random
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variables and Ri be repair time random variables, i = 1,2,... . Let
RI be the remaining repair time in a repair period which has been in
progress t wunits of time. Because R 1is NWU, the residual repair
time RE is stochastically greater than Ri' >0 = e 20 s o . By

Lemma 1, let I.1 = [o0,1], Fi be Borel sets and Pi be Lebesgue measure,

e
define R, , RF s B2 0, on CE.; F.,P.) such that P{( R, £ R, } = 1
i i i i i St

Define Rg on (IO, FO,PO) and define Li on similar probability spaces
(Ji' Gi,Qi) . Let (@, F,P) be the product space of all the above spaces;
extend the domain of the above-define random variables in the obvious way.

{2(t), t 201} is automatically defined on (2, F,P) . We define

{z(t), t201} as follows: on { L e z (t) = uwtt for

0 1
0 < £ < Rg , and Zu(t) =2(t) for t 2 R; . Note that the lack of

memory property of the exponential distribution guarantees that the

first lifetime of the Zu-process will have the correct distribution. On

u u
> iti =2 i = >
{ RO Ll } , condition over Ll 1 aE L1 21 and RO 21 then
at time 21 (when the Z-process begins its first repair period) the Zu-
+
process has been under repair for a duration u+9.l 7y thas R; 11
describes the repair status of Zu . On the set { Ll = 21 < Rg 7
+
RuzlSR 1.} define 2 (e} = wt for 0<esh % BAT"1 and
1 1 2 u i 1
u+f . ;
Zu(t) =2(t) for t 2 21 + Rl 1l . By construction, the Z-process is
+
repaired before the Zu-process; since R; 12’1 < Rl + L2 ,» the Z-process

will be functioning when the repair of the Zu-process is completed and
the residual lifetime will be exponential. This procedure of defining Zu
on (22, F,P) can be continued inductively. The next step is to condition

- & u u+ I
over { L, = 21 P Rp=r . L 22 } ana { Ry 2 21 A Ry 12 T, = 22

e —————
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Given these conditions, the Zu—process has been under repair t_+u time

3
. s u+t ; s : ; ;
units at time t3 = 21+r1+22 , thus R2 3 1is the distribution of resid-
u
i 1 = > = =
ual repair time. On the set { L1 Zl 2 R0 . Rl r’ ; L2 22 i
u+ u+t+t
> < i = < < +
Rl 1 rl + 22 x R2 3 R2+L3 } define Zu(t) t+u for O t t3
+
R;+t3 and Zu(t) = Z(t) for € 2 t3+R; t3 . It should be clear from the

construction that Zu(t) > Z(t) with probability 1 .

Theorem 3 can be used to establish almost sure comparisons between the

operating processes of coherent systems with exponential component life

times and NWU component repair times similar to the stochastic inequality
established by Barlow and Proschan (1976) and then show that the time

until first system failure is NBU.

&
i
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